

First Total Synthesis of the Alkaloid Polycitrin B

Egle M. Beccalli,* Francesca Clerici and Alessandro Marchesini

Istituto di Chimica Organica, Facoltà di Farmacia, Università degli Studi di Milano, Via Venezian 21, 20133 Milan, Italy Received & October 1000: revised 1 Echrupy 2000: eccented 17 Echrupy 2000

Received 8 October 1999; revised 1 February 2000; accepted 17 February 2000

Abstract—Starting from 3,5-dibromo-4-methoxy-phenylacetic acid methyl ester 2, a first total synthesis of the marine alkaloid polycitrin B is reported, based on the Pd catalyzed coupling reaction of the triflate 4 with the (4-methoxymethoxy-phenyl)tributyl stannane. © 2000 Elsevier Science Ltd. All rights reserved.

Polycitrin A (**la**) and B (**lb**) are alkaloids that contain a maleimide unit with two aromatic residues at positions 3 and 4, and the nitrogen atom substituted with a (4-hydroxy-phenyl)ethyl residue. Their isolation from the marine Ascidian Polycitor sp. and structure elucidation were reported in 1994 by Kashman and coworkers.¹ In 1995, Steglich and coworkers² reported the biomimetic synthesis of Polycitrin A. We now report a total synthesis of polycitrin B based on a Pd catalyzed cross coupling reaction, and starting from 4-methoxyphenylacetic acid methyl ester.

The dibromo ester **2** was prepared by bromination of 4-methoxyphenylacetic acid methyl ester following the method reported for the bromination of the corresponding acid.^{4,5} Condensation of the ester **2** with dimethyl oxalate gave compound **3** as a 1:1 mixture of keto- and enol forms (the ¹H NMR spectra recorded in DMSO, showed the enol form only). The triflate **4** was obtained from **3** by reaction with trifluoromethanesulfonic anhydride and in the presence of Hunig's base.³

The coupling reaction between triflate **4** and tributyl-(4methoxymethoxy-phenyl)-stannane⁶ was unsatisfactory when carried out according to the classical Stille conditions $[Pd(PPh_3)_4$, THF at reflux]⁷, the coupling product **5** being obtained in a very low yield. A dramatic improvement was achieved when the reaction was carried out in DMF at 70– 75°C with Pd₂dba₃ [tris(dibenzylideneacetone)dipalladium] as the catalyst and in the presence of triphenylphosphine. Using these conditions, **5** was obtained in 81% yield (Scheme 1).

Removal of the methoxymethyl ether in **5** was achieved with trimethyl silyl chloride-sodium iodide⁸ giving phenol

6. Basic hydrolysis of the ester groups then provided anhydride 7, which was brominated with bromine in glacial acetic acid to give 8.

Polycitrin B was obtained by heating a mixture of compound **8** with tyramine, Hunig's base and phenol at 140° C.² Using these conditions, polycitrin B and polycitrin A were both obtained in a 3:2 ratio. This result was rationalized in terms of an S_NAr reaction path⁹ with water as the nucleophile, addition being assisted by the presence of strongly electron withdrawing groups on the aromatic ring. Better results were obtained working in the presence of activated molecular sieves. In this case a considerable improvement was observed in favour of the polycitrin B and the yield of polycitrin A was diminished.

The spectral data for the polycitrin B is in agreement with those reported in literature.¹ Only 2 mg of the compound were isolated from the natural source as a yellowish fluorescent oil. By the synthetic path, the compound was obtained in a good yield and crystallized from CH_2Cl_2 -pentane as yellow crystals.

Experimental

Melting points were determined on a Büchi 510 apparatus and are uncorrected. IR spectra were recorded on a JASCO IR Report 100 instrument, in Nujol mull for solids and as liquid films for oils. ¹H NMR and ¹³C NMR spectra were recorded on a Varian Gemini 200 or a Bruker AVANCE DRX 300 spectrometer. Chemical shifts are expressed in ppm (δ) relative to TMS. UV spectra were recorded on a UVICON 943 Kontron instrument. Mass spectra were obtained by electron impact ionization at 70 eV from a MD 800 Finnigan instrument using the direct exposure probe (DEP). Column chromatography was performed on Kieselgel Merck 60, 0.063–0.2 mm. Organic extracts were

Keywords: alkaloids; coupling reactions; palladium and compounds; tin and compounds.

^{*} Corresponding author. Tel.: +270-601774; fax: +270-638473; e-mail: egle.beccalli@unimi.it

Scheme 1.

dried with Na_2SO_4 . Evaporation of the solvent was carried out under vacuum on a rotary evaporator.

3,5-Dibromo-4-methoxy-phenyl acetic acid methyl ester 2. To a solution of 4-methoxy-phenyl acetic acid methyl ester **(9,18, 50 mmol) in anhydrous chloroform (90 mL),** FeBr₂ was added (1.72 g, 7.9 mmol). A solution of bromine (7.8 mL, 150 mmol) in chloroform (15 mL) was added dropwise to the reaction vessel. After the mixture was stirred for 48 h at room temperature, additional bromine (4 mL, 77 mmol) and FeBr₂, (400 mg, 1.85 mmol) were added. The solution was stirred for 48 h, then poured carefully into an excess of 5% aqueous NaHSO₃, and extracted with Et₂O (2×50 mL). The combined ethereal extracts were washed with H₂O and then dried. Removal of the solvent afforded the crude product which was purified by silica gel column chromatography (pentane– CH_2CI_2 1:1) to give the compound **2** (12.5 g, 80%) as white crystals, mp 39–40°C (hexane), (lit.⁵ mp 36°C from MeOH).

2-(3,5-Dibromo-4-methoxy-phenyl)-3-hydroxy-but-2enedioic acid dimethyl ester 3. To a methanolic solution of sodium methoxide, formed by adding Na (1.38 g, 60 mmol) to anhydrous methanol (130 mL), compound **2** (10 g, 30 mmol) and dimethyloxalate (5.3 g, 45 mmol) were added. The mixture was heated under reflux for 5 h, then the solvent was evaporated and the residue diluted with 4% HCl (70 mL) and extracted with CH₂CI₂ (2×50 mL). The organic layer was dried, filtered and evaporated. The crude product was purified by silica gel column chromatography (pentane–CH₂CI₂ 2:1) to give compound **3** as an oil in quantitative yield; C₁₃H₁₂Br₂O₆ requires C, 36.82; H, 2.85. Found: C, 36.70; H, 2.80. ν_{max} 3450, 1725, 1642 cm⁻¹; δ_{H} (300 MHz DMSO-d₆) 3.60 (3H, s, OMe), 3.78 (3H, s, OMe), 3.81 (3H, s, OMe), 7.54 (2H, s, aryl-H), 12.40 (1H, s, exchange with D₂O, OH).

2-(3,5-Dibromo-4-methoxy-phenyl)-3-(trifluoromethanesulfonyloxy)-but-2-enedioic acid dimethyl ester 4. Compound 3 (5.6 g, 13.2 mmol) was dissolved in dry dichloromethane (70 mL) and N,N-diisopropylethylamine (3.4 mL, 19.8 mmol) was added. The reaction mixture was cooled at 0°C and a solution of trifluoromethanesulfonic anhydride (2.82 mL, 17 mmol) in CH₂Cl₂ (10 mL) was added dropwise with stirring. The mixture was kept at 0°C for 15 min, then warmed to room temperature and washed with water (2×40 mL). The organic layer was dried, filtered and evaporated and the residue purified by silica gel column chromatography (hexane- CH_2Cl_2 1:1) to give 4 (6.9 g, 84%) as white solid, mp $107-108^{\circ}C$ (pentane-Et₂O); C₁₄H₁₁Br₂F₃O₈S requires C, 30.24; H, 1.99. Found: C, 30.41; H, 1.96; ν_{max} 1722, 1717, 1620 cm⁻¹; δ_{H} (200 MHz CDCl₃) 3.92 (3H, s, OMe), 3.93 (3H, s, OMe), 3.95 (3H, s, OMe), 7.68 (2H, s, aryl-H).

2-(3,5-Dibromo-4-methoxy-phenyl)-3-(4-methoxymethoxyphenyl)-but-2-enedioic acid dimethyl ester 5. Compound 4 (1.7 g, 34 mmol) and tributyl-(4-methoxymethoxyphenyl)-stannane⁶ (2.18 g, 51 mmol) were dissolved in DMF (10 mL). Pd₂dba₃ (155 mg, 0.17 mmol) and Ph₃P (96 mg, 0.36 mmol) were added to this solution and the mixture was heated at 70-75°C for 1 h. After this time, the solution was poured into a saturated NaCl-H₂O solution (150 mL) and extracted with Et_2O (2×50 mL). The organic layer was dried, filtered and evaporated and the residue purified by crystallization giving 5 (1.52 g, 81%) as white crystals, mp 133-134°C (Et₂O); C₂₁H₂₀Br₂O₇ requires C, 46.35; H, 3.70. Found: C, 46.21; H, 3.66; v_{max} 1721, 1699, 1583 cm⁻¹; $\delta_{\rm H}$ (200 MHz CDCl₃) 3.44 (3H, s, OMe), 3.82 (3H, s, OMe), 3.85 (3H, s, OMe), 3.86 (3H, s, OMe), 5.15 (2H, s, CH₂O), 6.90 (2H, d, J=9.0 Hz, aryl-H), 7.01 (2H, d, J=9.0 Hz, aryl-H), 7.24 (2H, s, aryl-H).

2-(3,5-Dibromo-4-methoxy-phenyl)-3-(4-hydroxy-phenyl)but-2-enedioic acid dimethylester 6. To a solution of compound 5 (1.8 g, 3.3 mmol) in dry acetonitrile (40 mL) at -20°C, NaI (600 mg, 4 mmol) and trimethylsilyl chloride (0.85 mL, 6.6 mmol) were added. After stirring at this temperature for 20 min., the mixture was allowed to warm to room temperature. The acetonitrile was then removed in vacuo and the residue extracted with Et_2O (2×30 mL). The organic phase was dried, filtered and evaporated and the crude product purified by silica gel column chromatography (CH₂Cl₂-Et₂O 20:1) to give 6 (1.52 g, 92%) as white crystals, mp 167°C (pentane–Et₂O); C₁₉H₁₆Br₂O₆ requires C, 45.63; H, 3.22. Found: C, 45.48; H 3.19; ν_{max} 3220br, 1699, 1583 cm⁻¹; $\delta_{\rm H}$ (200 MHz CDCl₃) 3.82 (3H, s, OMe), 3.85 (3H, s, OMe), 3.86 (3H, s, OMe), 5.07 (1H, s, exchange with D_2O , OH), 6.70 (2H d, J=8.7 Hz, aryl-H), 6.96 (2H, d, J=8.7 Hz, aryl-H), 7.24 (2H, s, aryl-H).

3-(3,5-Dibromo-4-methoxy-phenyl)-4-(4-hydroxy-phenyl)furan-2,5-dione 7. To a solution of compound **6** (1.66 g, 3.3 mmol) in MeOH (60 mL) was added a solution of sodium methoxide (from Na 536 mg, 23.3 mmol in MeOH, 20 mL). The reaction mixture immediately turned red. Water (1.2 mL) was then added and the mixture was heated under reflux for 2 h. After solvent evaporation, the residue was diluted with 4% HCl and extracted with CH₂Cl₂ (2×40 mL). The combined organic layers were dried, filtered and evaporated and the crude product purified by silica gel column chromatography (CH₂Cl₂–Et₂O 20:1) to give 7 (1.16 g, 77%) as yellow solid, mp 181–183°C (hexane–CH₂Cl₂); C₁₇H₁₀Br₂O₅ requires C, 44.97; H, 2.22. Found: C, 45.02; H, 2.19; ν_{max} 3420, 1820, 1750, 1739 cm⁻¹; $\delta_{\rm H}$ (200 MHz CDCl₃) 3.95 (3H, s, OMe), 5.25 (1H, bs, exchange with D₂O, OH), 6.90 (2H, d, *J*=9.0 Hz, aryl-H), 7.53 (2H, d, *J*=9.0 Hz, aryl-H), 7.71 (2H, s, aryl-H).

3-(3,5-Dibromo-4-methoxy-phenyl)-4-(3,5 dibromo-4-hydroxy-phenyl)-furan-2,5-dione 8. To a stirred solution of 7 (883 mg, 1.94 mmol) in glacial acetic acid (30 mL) a solution of bromine (0.6 mL, 11.64 mmol) in acetic acid (10 mL) was added dropwise at room temperature in 10 min. After stirring for 1 h, the solution was poured into Na₂SO₃-H₂O solution to give a yellow precipitate. The solid was filtered off, washed with cool water and dried in vacuo. Recrystallization from pentane-Et₂O yielded 8 (1.09 g, 89%) as yellow crystals; mp 191–193°C; C₁₇H₈Br₄O₅ requires C, 33.37; H, 1.32. Found: C, 33.42; H, 1.26; ν_{max} 3400, 1820, 1740 cm⁻¹; $\delta_{\rm H}$ (300 MHz CDCl₃) 3.97 (3H, s, OMe), 6.30 (1H, bs, exchange with D₂O, OH), 7.75 (4H, s, aryl-H).

Polycitrin B 1b. A mixture of 8 (300 mg, 0.49 mmol), phenol (1.2 g), N,N-diisopropylethylamine (0.7 mL), tyramine (140 mg, 1 mmol) and activated molecular sieves, 4 Å, powder (1 g) (Aldrich) was heated with vigorous stirring under argon for 2 h at 140°C. The brown melt was cooled, dissolved in CH₂Cl₂ (30 mL), filtered and the filtered washed with 4% HCl (40 mL). The organic layer was dried, filtered and evaporated. The crude mixture was chromatographed on silica gel (eluent pentane-CH₂Cl₂ 2:1 to CH₂Cl₂ to CH₂Cl₂-Et₂O 20:1), giving polycitrin B (320 mg, 89%); mp 140-142°C (CH₂C1₂-pentane) (lit.¹ oil); C₂₅H₁₇Br₄NO₅ requires C, 41.08; H, 2.34; N, 1.92. Found: C, 41.22; H, 2.58; N, 2.05; UV (CH₃OH): λ_{max} $(\epsilon)=208$ (61028), 273 (19861), 490 (10278); ν_{max} 3350 br, 1842, 1678 cm⁻¹; $\delta_{\rm H}$ (300 MHz acetone-d₆) 2.88 (2H, t, J=7.6 Hz, CH₂), 3.77 (2H, bs, exchange with D₂O, OH), 3.79 (2H, t, J=7.6 Hz, CH₂), 3.94 (3H, s, OMe), 6.79 (2H, d, J=8.4 Hz, aryl-H), 7.11 (2H, d, J=8.4 Hz, aryl-H), 7.73 (2H, s, aryl-H), 7.78 (2H, s, aryl-H); δ_C (300 MHz acetone– d₆) 33.70, 40.29, 60.74, 110.95, 115.73, 118.26, 122.97, 127.94, 129.35, 130.15, 133.00, 134.22, 134.47, 134.66, 152.74, 155.61, 156.48, 169.78, 169.86; m/z (EI) 733 (2), 731 $[M^+]$ (3), 729 (2), 613 (4), 611 (6), 609 (4), 527 (4), 525 (6), 523 (4), 339 (3), 337 (6), 335 (3), 279 (3), 277 (6), 275 (3), 177 (3), 163 (4), 161 (4), 148 (7), 120 (100); and polycitrin A (51 mg, 14%); mp 170–172°C (CH₂C1₂–pentane) (lit.² mp $180-181^{\circ}$ C from CHC1₃-MeOH).

References

1. Amira, R.; Goldberg, I.; Stein, R.; Frolow, F.; Benayan, Y.; Schleyer, M.; Kashman, Y. J. Org. Chem. **1994**, *59*, 999–1003.

2. Terpin, A.; Poiborn, K.; Steglich, W. Tetrahedron 1995, 51, 9941–9946.

- 3. Beccalli, E. M.; Gelmi, M. L.; Marchesini, A. Eur. J. Org. Chem. 1999, 1421-1426.
- 4. Weller, D. D.; Stirchak, E. P.; Yokoama, A. J. Org. Chem. 1984, 49, 2061–2063.
- 5. Chantraine, J.-M.; Combaut, G.; Teste, J. *Phytochemistry* **1973**, *12*, 1793–1796.
- 6. Morita, Y.; Kashiwagi, A.; Nakasuji, K. J. Org. Chem. 1997, 62, 7464–7468.
- 7. Scott, W. J.; Stille, J. K. J. Am. Chem. Soc. 1986, 108, 3033–3040.
- 8. Rigby, J. H.; Wilson, J. Z. *Tetrahedron Lett.* **1984**, 25, 1429–1432.
- 9. Huffman, J. W.; Wu, M.-J.; Lu, J. J. Org. Chem. 1998, 63, 4510-4514.